Search results

1 – 3 of 3
Article
Publication date: 18 June 2020

Mervin Joe Thomas, Mithun M. Sanjeev, A.P. Sudheer and Joy M.L.

This paper aims to use different machine learning (ML) algorithms for the prediction of inverse kinematic solutions in parallel manipulators (PMs) to overcome the computational…

Abstract

Purpose

This paper aims to use different machine learning (ML) algorithms for the prediction of inverse kinematic solutions in parallel manipulators (PMs) to overcome the computational difficulties and approximations involved with the analytical methods. The results obtained from the ML algorithms and the Denavit–Hartenberg (DH) approach are compared with the experimental results to evaluate their performances. The study is performed on a novel 6-degree of freedom (DoF) PM that offers precise motions with a large workspace for the end effector.

Design/methodology/approach

The kinematic model for the proposed 3-PPSS PM is obtained using the modified DH approach and its inverse kinematic solutions are determined using the Levenberg–Marquardt algorithm. Various prediction algorithms such as the multiple linear regression, multi-variate polynomial regression, support vector, decision tree, random forest regression and multi-layer perceptron networks are applied to predict the inverse kinematic solutions for the manipulator. The data set required to train the network is generated experimentally by recording the poses of the end effector for different instantaneous positions of the slider using the concept of ArUco markers.

Findings

This paper fully demonstrates the possibility to use artificial intelligence for the prediction of inverse kinematic solutions especially for complex geometries.

Originality/value

As the analytical models derived from the geometrical method, Screw theory or numerical techniques involve approximations and needs more computational power, it is not advisable for real-time control of the manipulator. In addition, the data set obtained from the derived inverse kinematic equations to train the network may lead to inaccuracies in the predicted results. This error may generate significant deviations in the end-effector position from the desired position. The present work attempts to resolve this issue by proposing a camera-based approach that uses ArUco library and ML algorithms to create the data set experimentally and predict the inverse kinematic solutions accurately.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 December 2022

Meby Mathew, Mervin Joe Thomas, M.G. Navaneeth, Shifa Sulaiman, A.N. Amudhan and A.P. Sudheer

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this…

Abstract

Purpose

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this field. The shortcomings and technological developments in sensing the input signals to enable the desired motions, actuation, control and training methods are explained for further improvements in exoskeleton research.

Design/methodology/approach

Search platforms such as Web of Science, IEEE, Scopus and PubMed were used to collect the literature. The total number of recent articles referred to in this review paper with relevant keywords is filtered to 143.

Findings

Exoskeletons are getting smarter often with the integration of various modern tools to enhance the effectiveness of rehabilitation. The recent applications of bio signal sensing for rehabilitation to perform user-desired actions promote the development of independent exoskeleton systems. The modern concepts of artificial intelligence and machine learning enable the implementation of brain–computer interfacing (BCI) and hybrid BCIs in exoskeletons. Likewise, novel actuation techniques are necessary to overcome the significant challenges seen in conventional exoskeletons, such as the high-power requirements, poor back drivability, bulkiness and low energy efficiency. Implementation of suitable controller algorithms facilitates the instantaneous correction of actuation signals for all joints to obtain the desired motion. Furthermore, applying the traditional rehabilitation training methods is monotonous and exhausting for the user and the trainer. The incorporation of games, virtual reality (VR) and augmented reality (AR) technologies in exoskeletons has made rehabilitation training far more effective in recent times. The combination of electroencephalogram and electromyography-based hybrid BCI is desirable for signal sensing and controlling the exoskeletons based on user intentions. The challenges faced with actuation can be resolved by developing advanced power sources with minimal size and weight, easy portability, lower cost and good energy storage capacity. Implementation of novel smart materials enables a colossal scope for actuation in future exoskeleton developments. Improved versions of sliding mode control reported in the literature are suitable for robust control of nonlinear exoskeleton models. Optimizing the controller parameters with the help of evolutionary algorithms is also an effective method for exoskeleton control. The experiments using VR/AR and games for rehabilitation training yielded promising results as the performance of patients improved substantially.

Research limitations/implications

Robotic exoskeleton-based rehabilitation will help to reduce the fatigue of physiotherapists. Repeated and intention-based exercise will improve the recovery of the affected part at a faster pace. Improved rehabilitation training methods like VR/AR-based technologies help in motivating the subject.

Originality/value

The paper describes the recent methods for signal sensing, actuation, control and rehabilitation training approaches used in developing exoskeletons. All these areas are key elements in an exoskeleton where the review papers are published very limitedly. Therefore, this paper will stand as a guide for the researchers working in this domain.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2002

George K. Chacko

Develops an original 12‐step management of technology protocol and applies it to 51 applications which range from Du Pont’s failure in Nylon to the Single Online Trade Exchange…

3796

Abstract

Develops an original 12‐step management of technology protocol and applies it to 51 applications which range from Du Pont’s failure in Nylon to the Single Online Trade Exchange for Auto Parts procurement by GM, Ford, Daimler‐Chrysler and Renault‐Nissan. Provides many case studies with regards to the adoption of technology and describes seven chief technology officer characteristics. Discusses common errors when companies invest in technology and considers the probabilities of success. Provides 175 questions and answers to reinforce the concepts introduced. States that this substantial journal is aimed primarily at the present and potential chief technology officer to assist their survival and success in national and international markets.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 14 no. 2/3
Type: Research Article
ISSN: 1355-5855

Keywords

1 – 3 of 3